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Abstract
The coresets approach, also called subsampling or subset selection, aims to select a subsample as a surrogate for the observed
sample and has found extensive application in large-scale data analysis. Existing coresets methods construct the subsample
using a subset of rows from the predictor matrix. Such methods can be significantly inefficient when the predictor matrix is
sparse or numerically sparse. To overcome this limitation, we develop a novel element-wise subset selection approach, called
core-elements, for large-scale least squares estimation. We provide a deterministic algorithm to construct the core-elements
estimator, only requiring an O(nnz(X) + rp2) computational cost, where X is an n × p predictor matrix, r is the number
of elements selected from each column of X , and nnz(·) denotes the number of non-zero elements. Theoretically, we show
that the proposed estimator is unbiased and approximately minimizes an upper bound of the estimation variance. We also
provide an approximation guarantee by deriving a coresets-like finite sample bound for the proposed estimator. To handle
potential outliers in the data, we further combine core-elements with the median-of-means procedure, resulting in an efficient
and robust estimator with theoretical consistency guarantees. Numerical studies on various synthetic and real-world datasets
demonstrate the proposed method’s superior performance compared to mainstream competitors.

Keywords Coresets · Linear model · Sparse matrix · Subset selection

1 Introduction

Sparse matrices are matrices in which most of the elements
are zero. Such matrices are common in various areas, includ-
ing medical research, bioinformatics, privacy-preserving
analysis, and distributed computing (Davis and Hu 2011;
Nguyen et al. 2023; Liu et al. 2021; Kairouz et al. 2021).
In these areas, data are usually of high sparsity due to tech-
nical noises, data privacy concerns, and transmission cost,
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among others (Konečnỳ et al. 2016; Andrews et al. 2021).
One example is the single-cell RNA-sequencing (scRNA-
seq) data containing information about the gene expression
level of single cells. Owing to technical noises and intrinsic
biological variability, scRNA-seq data expressed in count
matrices always possess significant sparsity, known as the
zero-inflation phenomenon (Nguyen et al. 2023). Another
example is the word occurrence matrix, whose elements are
calculated by multiplying two metrics, i.e., how many times
a word appears in a document, and the inverse document fre-
quency of the word across a set of documents. Such matrices
are also highly sparse, especially for a short document and a
large language model that contains millions of words (Qaiser
and Ali 2018).

In reality, many sparse matrices also exist due to missing
values, i.e., the elements are not fully observed. Numerous
methods have been developed to deal with themissing values
in such cases, andmost of thesemethods aim to fill the sparse
matrix with some estimated non-zero values (Cai et al. 2010;
Van Buuren and Groothuis-Oudshoorn 2011; Hastie et al.
2015; Muzellec et al. 2020). In this paper, however, we are
less concerned with missing values and instead focus on the
case that the sparse matrix itself is fully observed.
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We consider large-scale data analysis where the predic-
tor matrix is highly sparse. One widely-used technique for
large-scale data analysis is the coresets method, also called
subsampling or subset selection. These methods select a sub-
sample as a surrogate for the observed sample. Recently,
such methods have been used pervasively in data reduction,
measurement-constrained analysis, and active learning (Li
and Meng 2021; Meng et al. 2021; Settles 2012). Various
coresets methods have been proposed for linear regression
(Dasgupta et al. 2009; Boutsidis et al. 2013; Ma and Sun
2015; Meng et al. 2017; Dereziński et al. 2018; Ma et al.
2020;Wang et al. 2021), generalized linear regression (Wang
et al. 2018; Ai et al. 2020, 2021; Yu et al. 2022), streaming
time series (Xie et al. 2019; Li et al. 2019), large-scale matrix
approximation (Wang and Zhang 2013; Alaoui andMahoney
2015; Wang et al. 2019), nonparametric regression (Ma et al.
2015; Meng et al. 2020; Sun et al. 2021; Meng et al. 2022;
Dai et al. 2023), among others. Another avenue for handling
large-scale data is data averaging (Wang et al. 2023), which
is beyond the scope of this paper.

Despite thewide application, most existing coresetsmeth-
ods mainly focus on dense predictor matrices, and may be
inefficient when the predictor matrix is of high sparsity. In
particular, most of these methods construct the subsample
using certain rows from the observed sample. When the
observed predictor matrix is sparse, the selected subsample
matrix also tends to be sparse for the subsampling methods
that preserve the empirical distribution of the full data (Mak
and Joseph 2018; Joseph and Vakayil 2022; Vakayil and
Joseph 2022). Such a subsample thus may lead to inefficient
results, since the selected zero-valued elements have almost
no impact on the down-streaming analysis, such as model
estimation, prediction, and inference. Another category of
subsampling approaches is designed for prediction pur-
poses (Joseph and Mak 2021; Chang 2022; Dai et al. 2023),
whose resulting subsample may not be statistically similar
to the full data, thereby potentially overcoming the ineffi-
ciency discussed above. Nevertheless, this class of methods
still encounters the probability of selecting a sparse subsam-
ple matrix when the full predictor matrix has an extremely
high sparsity. Consequently, more efficient statistical tools
suitable for sparse matrices are still meager.

In this paper, we bridge this gap by developing a novel
element-wise subset selection method, called core-elements,
for large-scale least squares estimation. Different from exist-
ing coresets methods that aim to select r rows from the
predictor matrix X ∈ R

n×p (n � p), we aim to construct a
sparser subdata matrix X∗ ∈ R

n×p by keeping rp elements
of X and zeroing out the remaining elements. Loosely speak-
ing, our approach generalizes the existing coresets methods
by getting rid of the requirement that the selected rp ele-
ments have to be located in r rows. Our major contributions
are three-fold as follows.

(1) We provide a deterministic algorithm to construct the
core-elements estimator for linear regression. Utilizing
such an estimator, we can approximate the least squares
estimation within O(nnz(X)+rp2) computational time,
where nnz(·) denotes the number of non-zero elements.
Theoretical analysis demonstrates that our proposed esti-
mator is unbiased and approximatelyminimizes an upper
bound on estimation variance.

(2) We establish a coresets-like finite sample bound for the
proposed estimator with approximation guarantees. In
particular, we show that to achieve an (1 + ε)-relative
error, the proposed estimator requires a subdata matrix
X∗ for the predictor matrix X such that the ratio ‖X −
X∗‖2/‖X‖2 isO(ε1/2). Intuitively, such a result indicates
that when X gets (numerically) sparser, fewer elements
are required in X∗ to achieve the (1 + ε)-relative error.

(3) To handle potential outliers in the data, we develop a
robust variant of the core-elementsmethod by integrating
it with the widely adopted median-of-means proce-
dure (Lugosi and Mendelson 2019; Lecué and Lerasle
2020; Huang and Lederer 2023). We further propose
an algorithm to construct the robust estimator within
O(nnz(X) + rp2) time. Theoretically, we show that the
robust estimator is consistent with the true coefficient
under certain regularity conditions.

To evaluate the empirical performance and computa-
tional efficiency of the proposed strategy, we compare it
with mainstream competitors through extensive synthetic
and real-world datasets, including uncorrupted and corrupted
data with dense or sparse predictor matrices. Interestingly,
although its primary design aims at sparse matrices, numer-
ical findings reveal that the proposed estimator significantly
outperforms its competitors regarding both estimation accu-
racy and CPU time, even when the predictor matrix is dense.

The remainder of this paper is organized as follows. We
start in Sect. 2 by introducing the linear model and the state-
of-the-art subsampling methods. In Sect. 3, we develop the
core-elements estimator and present its theoretical proper-
ties. The robust version of the core-elements estimator is
introduced in Sect. 4. We examine the performance of the
proposed estimators through extensive simulations and a
real-world example in Sects. 5 and 6, respectively. Technical
proofs, additional experimental results, and implementation
code are provided in supplementary materials.

2 Background

We adopt the common convention of using uppercase letters
for matrices and lowercase letters for vectors or scalars. We
denote the Euclidean norm and �1 norm of a vector x as
‖x‖ and ‖x‖1, respectively. For a matrix X , we represent its
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Table 1 Comparison of
mainstream subsampling
methods on computational cost,
method type, and sampling type

Method Computational cost∗ Method type Sampling type

Full sample O(np2) – –

Uniform subsampling O(rp2) Randomized Row-wise

Doubly sketching (Hou-Liu and Browne 2023) O(rp2) Randomized Row-wise

Leverage score subsampling (Ma and Sun 2015) O(np2 + rp2)† Randomized Row-wise

IBOSS (Wang et al. 2019) O(np + rp2) Deterministic Row-wise

OSS (Wang et al. 2021) O(np log r + rp2) Deterministic Row-wise

D-optimal subsampling (Reuter and Schwabe 2024) O(np2 + rp2)‡ Deterministic Row-wise

Core-elements (proposed) O(nnz(X) + rp2) Deterministic Element-wise

∗ Here, each method subsamples r rows or s = rp elements from an n × p predictor matrix
† The O(np2) component can be reduced to O(np log n) by involving some random projection-based approx-
imation methods (Drineas et al. 2012)
‡ The O(np2) component can be reduced to O(np) by using a simplified approximation that ignores non-
diagonal elements of the covariance matrix

spectral norm (i.e., largest singular value) as ‖X‖2 and its
Frobenius norm as ‖X‖F . The condition number of X , i.e.,
the ratio of its largest and smallest singular values, is denoted
as κ(X). Additionally, we use the notations E(·), pr(·), and
tr(·) for mathematical expectation, probability measure, and
trace, respectively.

2.1 Subsamplingmethods for least squares
estimation

Consider the linear regression model,

yi = x�
i β + εi , i = 1, . . . , n. (1)

Here {yi }ni=1 ⊂ R are the responses, {xi }ni=1 ⊂ R
p are

the observations, β ∈ R
p is a vector of unknown coeffi-

cients, and {εi }ni=1 are independent and identically distributed
(i.i.d.) error terms with zero mean and constant variance
σ 2. Let y = (y1, . . . , yn) ∈ R

n be the response vector,
X = (x1, . . . , xn)� ∈ R

n×p be the predictor matrix, and
ε = (ε1, . . . , εn) ∈ R

n be the noise vector. In this study, we
assume that n � p, p is fixed, and X is of full column rank.
We focus on the estimation of slope parameters and assume
that the full data have been centralized. It is widely known
that the ordinary least squares (OLS) estimator of β takes the
form

̂βOLS = (X�X)−1X�y. (2)

In practice, the calculation of the least squares problem
may suffer from high computational costs. Specifically, stan-
dard computation of the formulation (2) requires O(np2)
computational time, which can be considerable when both
n and p are large. To tackle the computational burden, var-
ious subsampling methods have been proposed. The main
idea of subsampling methods can be described as follows:

given a predictor matrix X ∈ R
n×p, subsample r rows (i.e.,

r observations) from X to construct a much smaller matrix
̂X ∈ R

r×p, and then use it as a surrogate for X in down-
streaming analysis.

Most of the existing subsampling methods can be divided
into two classes, i.e., the randomized subsampling approach
and the design-based subsampling approach. The former
class aims to carefully design a data-dependent non-uniform
sampling probability distribution such that more informative
data points will be selected with larger sampling weights
(Ma et al. 2015; Meng et al. 2017; Knight 2018; Ma et al.
2020; Ai et al. 2021). In contrast, the latter class aims to
construct the most effective subsample estimator based on
certain optimality criteria developed in the design of exper-
iments (Wang et al. 2019; Meng et al. 2021; Wang et al.
2021, 2022; Chasiotis and Karlis 2024). Despite the numer-
ous subsampling algorithms proposed, most of them rely on
row-wise sampling, which can be less effective when deal-
ingwith (numerically) sparse predictormatrices, as discussed
in Sect. 1. In contrast, element-wise sampling is more adept
at exploiting the inherent sparsity of data, motivating the
development of the core-elements method. See Table 1 for a
comprehensive comparison. We also refer readers to Li and
Meng (2021) and Yu et al. (2023) for recent reviews.

Closely related to the subsampling methods are the core-
sets methods. These methods aim to select a subsample in a
deterministic way, such that a loss function L based on the
subsample estimator is bounded by the loss function based
on the full-sample estimator multiplying a constant (1 + ε)

(Boutsidis et al. 2013; Munteanu et al. 2018; Feldman et al.
2020; Maalouf et al. 2022). In linear models, a subsample
̂X is called an (1 + ε)-coreset (ε > 0), if there exists an
estimator ˜β constructed by ̂X , such that

‖y − X̂βOLS‖2 ≤ ‖y − X˜β‖2 ≤ (1 + ε)‖y − X̂βOLS‖2.

123



  190 Page 4 of 16 Statistics and Computing           (2024) 34:190 

2.2 Sparse and numerically sparse matrices

Recall that sparse matrices are matrices in which most ele-
ments are zero. Commonly, the sparsity is measured by using
the �0 norm (i.e., the number of non-zero elements). Such a
procedure, however, may not accurately reflect the simplicity
of nearly sparse instances with a large number of small but
non-zero elements. To combat the obstacle, existing litera-
ture also considers the so-called numerically sparse matrices
(Gupta and Sidford 2018; Braverman et al. 2021). Intuitively,
numerically sparse is aweaker condition than sparse inwhich
we do not require most elements to be zero, only that most
elements are small enough to be ignored. Examples of numer-
ically sparse arewidely encountered inpractice, includingbut
not limited to linear programming constraints of the form
x1 ≥ ∑n

i=1 xi/n, and physical models whose strength of
interaction decays with distance (Carmon et al. 2020).

2.3 Element-wise sampling on sparse datamatrices

Consider the scenario that the observed predictor matrix X ∈
R
n×p is a (numerically) sparse matrix in which most of the

elements are (nearly) zero. Oftentimes, of interest is to find
a sparser matrix X+ ∈ R

n×p that is a good proxy for X .
Here, X+ is also a sparse matrix, from which the non-zero
elements are a subset of the non-zero elementswith respect to
(w.r.t.) X . The problem of finding such amatrix X+ hasmany
applications in eigenvector approximation (Arora et al. 2006;
Achlioptas and Mcsherry 2007; El Karoui and d’Aspremont
2010; Kundu et al. 2017; Gupta and Sidford 2018), semi-
definite programming (Arora et al. 2005; d’Aspremont 2011;
Garber and Hazan 2016), matrix completion (Candès and
Recht 2009; Candès and Tao 2010; Chen et al. 2014), matrix
multiplication (Mahoney 2016; Li et al. 2023), etc.

To construct such a matrix X+, most existing methods
aim to design a good sampling probability distribution pi j
(i = 1, . . . , n; j = 1, . . . , p), such that the approximation
error ‖X−X+‖2 is as small as possible given a sampling bud-
get s. Achlioptas andMcsherry (2007) proposed the so-called
�2 sampling such that pi j ∝ x2i j , which was later refined by
Drineas andZouzias (2011).Alternatively,Arora et al. (2006)
proposed �1 sampling, where pi j ∝ |xi j |. Later, Achlioptas
et al. (2013) proposed a near-optimal probability distribu-
tion using matrix-Bernstein inequality. Their approach can
be regarded as a combination of two �1-based distributions:
pi j ∝ |xi j | when s is small, and pi j ∝ |xi j | · ‖xi‖1 as s
grows. More recently, Kundu et al. (2017) developed hybrid-
(�1, �2) sampling, which is also a convex combination of
probabilities previously proposed.

In general, existing literature on element-wise sampling
mainly focus on the algorithmic perspective, such that the
applications of interest are usually compressed sensing and
matrix recovery. Nevertheless, element-wise sampling with

a statistical perspective, such that the applications involve
providing effective and efficient solutions for large-scale sta-
tistical modeling and inference, is still a blank field and
remains further studied.

3 Core-elements

In this section,we present ourmain algorithmand the theoret-
ical properties of the proposed estimator. We first introduce
the definition of core-elements and then construct an unbi-
ased core-elements estimator. Following this, we derive an
upper bound for the variance of such an estimator by uti-
lizing the matrix-form Taylor expansion. Subsequently, we
provide an algorithm for core-elements selection, resulting in
an estimator that approximately minimizes this upper bound.
Furthermore, a coresets-like finite sample bound is provided
to quantify the approximation error for the proposed estima-
tor.

3.1 Problem setup

We consider the problem of large-scale least squares estima-
tion when the predictor matrix X is sparse or numerically
sparse. To utilize the sparse structure, we propose to con-
struct a sparser subdata matrix X∗ ∈ R

n×p from X carefully,
and use X∗ to construct an efficient least squares approxi-
mation. In particular, given a positive integer s(< np), let S
be an n × p matrix such that its elements involve s ones and
np− s zeros. The subdata matrix X∗ then can be formulated
as X∗ = S � X , where � represents the Hadamard product,
i.e., element-wise product. In other words, X∗ is produced
by keeping s elements of X and zeroing out the remaining
elements. We then propose a general estimator that takes the
form

˜β(D) = DX∗�y, (3)

where D ∈ R
p×p is a scaling matrix to be determined. For

simplicity, suppose that both X�X and X∗�X are invert-
ible in context; otherwise, their inverse operation should be
replaced by a generalized inverse.

A natural question arises: given a fixed budget s, among
all the estimators that take the form (3), how to construct
the scaling matrix D and the sparse subdata matrix X∗,
such that (i) the estimator ˜β(D) is unbiased and (ii) its esti-
mation variance is as small as possible? For the first part
of this question, one can see that when D = (X∗�X)−1,
E{˜β(D)} = (X∗�X)−1X∗�{Xβ + E(ε)} = β, indicating
that ˜β(D) is unbiased to β. Such a finding motivates us to
focus on the unbiased estimator

˜β = (X∗�X)−1X∗�y.
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Consider the classical subsample-based estimator

˜β ′ = (̂X�
̂X)−1

̂X� ŷ,

where ̂X ∈ R
r×p represents a subsample (of full column

rank) consisting of r rows from X , and ŷ ∈ R
r contains

the corresponding elements from y. When the selected s =
rp elements are located in r rows, i.e., when the element-
wise subset selection degenerates to the row selection, it can
be shown that ˜β = ˜β ′. While in general cases, these two
estimators are different.

Next, we consider the variance of the estimator ˜β. Recall
that σ 2 represents the variance of random errors inmodel (1).
Our goal is to find a subdata matrix X∗ that minimizes the
estimation variance, which has a closed form

E(‖˜β − β‖2|X)

= E{y�X∗(X�X∗)−1(X∗�X)−1X∗�y|X} − β�β

= β�β + σ 2 tr{X∗(X�X∗)−1(X∗�X)−1X∗�} − β�β

= σ 2‖(X∗�X)−1X∗�‖2F . (4)

However, this variance term is challenging to minimize
directly. To overcome the obstacle, we provide an upper
bound for (4) and aim to minimize the upper bound instead.
The upper bound is derived by utilizing the matrix-form Tay-
lor expansion (see Chapter 1, Higham (2008)), detailed in
Lemma 1.

Lemma 1 Let L = X − X∗. A Taylor expansion of E(‖˜β −
β‖2|X) around the point X∗ = X yields the following upper
bound,

E(‖˜β − β‖2|X) ≤ σ 2[tr{(X�X)−1}
+ ‖(X�X)−1‖22‖L‖2F ]{1 + O(λ0)}. (5)

Here, assume the spectral radius λ0 = ‖(X�X)−1L�X‖2 <

1 to ensure the convergence of the matrix series.

When the Taylor expansion in Lemma 1 is valid, the
inequality (5) indicates that the upper bound of the estimation
variance decreases as ‖L‖F and the remainder λ0 decreases.
Considering λ0, we have

λ0 ≤ ‖(X�X)−1‖2‖X‖2‖L‖2
≤ ‖(X�X)−1‖2‖X‖2

(

p max
j∈{1,...,p}l

( j)�l( j)
)1/2

,

where l( j) denotes the j th column of L . Such an inequality
indicates that a smaller value of the maximum column norm
of L is associated with a smaller λ0. As a result, to minimize
the upper bound in Lemma 1, we need to keep both ‖L‖F
and the column norms of L as small as possible.

Motivated by this, we propose to construct X∗ by keeping
the elements with the top largest absolute values w.r.t. each
column of X and zeroing out the remaining. Intuitively, for
a fixed number of selected elements, such L has the approx-
imately minimum column norm respecting every column.
Thus, both the values of ‖L‖F and ‖L‖2 will be approx-
imately minimized, resulting in a relatively small upper
bound of the estimation variance in Lemma 1. Moreover,
the column-wise process can prevent any entire column of X
from being discarded, thus avoiding producing a singular X∗
and ensuring the estimability of coefficients. We call such a
procedure “core-elements” since the idea behind it is analo-
gous to “coresets”, except that what we select are elements
instead of rows.

3.2 Main algorithm

Without loss of generality, we assume the number of selected
elements s = rp, where r is an integer. Algorithm 1 sum-
marizes the construction of core-elements and the proposed
estimator, which are illustrated in Fig. 1.

Consider the computational cost of Algorithm 1. Con-
structing the matrix X∗ using a partition-based selection
algorithm requires O(nnz(X)) time (Musser 1997; Martınez
2004;Wang et al. 2019). Each column of X∗ contains at most
r non-zero elements, thus calculating X∗�X takes O(rp2)
time by using sparse matrix representations and operations.
The computing time for ˜β is thus at the order of O(rp2+ p3).
Therefore, the overall computational cost of Algorithm 1 is
O(nnz(X)+rp2), which becomes O(nnz(X))when n � r .
In the large-sample scenario such that n � p, such an
algorithm is much faster than the popular leverage-based
subsampling methods (Ma et al. 2015). This is because the

Fig. 1 Illustration for Algorithm 1. Each element of a matrix is labeled
with a different color, such that larger positive and smaller negative
values are labeled with more red and more black colors, respectively.
Step 1 illustrates the core-elements selection, where r = 3 elements
with the largest absolute values w.r.t. each column are selected. Step 2
illustrates the proposed estimator
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leverage-based methods involve the singular value decom-
position of the full predictor matrix, requiring a cost of the
order O(np2).

Algorithm 1 Core- elements(X , y, r )
1: Input: X = (xi j ) ∈ R

n×p , y ∈ R
n , r ∈ Z+

2: Initialize S = (0) ∈ R
n×p

3: for j = 1, . . . , p do
4: Let I = {i1, . . . , ir } be an index set, such that {|xiq j |}rq=1 are the

r largest ones among {|xi j |}ni=1
5: Let siq j = 1, q = 1, . . . , r

6: X∗ = S � X , where � represents the element-wise product
7: Return ˜β = (X∗�X)−1X∗�y

3.3 Theoretical properties

We now present our main theorem, indicating that the
selected elements are (1+ε)-core-elements for least squares
estimation. In other words, under some regularity conditions,
the proposed estimate achieves the (1+ε)-relative error w.r.t.
the �2 loss. Technical proofs are provided in the supplemen-
tary material.

Theorem 1 Given X ∈ R
n×p, y ∈ R

n and ε > 0, let X∗ be
the subdata matrix and ˜β be the estimate that calculated by
Algorithm 1. When X∗ satisfies ‖X − X∗‖2 ≤ ε′‖X‖2 with

0 < ε′ ≤ 1

κ2(X)

[

1 + {κ2(X) + 1}‖y‖
ε1/2‖y − X̂βOLS‖

]−1

, (6)

we have

‖y − X̂βOLS‖2 ≤ ‖y − X˜β‖2 ≤ (1 + ε)‖y − X̂βOLS‖2.
(7)

Theorem 1 indicates that to achieve the (1 + ε)-relative
error in inequality (7), Algorithm 1 requires a subdata matrix
X∗ such that the ratio ‖X−X∗‖2/‖X‖2 is O(ε1/2). This rate
is supported by empirical results in Sect. 5. Intuitively, such
a result also indicates that when the predictor matrix X gets
(numerically) sparser, fewer elements are required in X∗ to
achieve the same relative error w.r.t. the �2 loss.

In addition, the value of ε′ also depends on the condition
number κ(X) and the relative sum of squares error (SSE)
‖y − X̂βOLS‖2/‖y‖2. Specifically, a larger ε′ is admitted
to achieve the (1 + ε)-relative error if the condition number
κ(X) decreases and the SSE increases. The following remark
discusses the relationship between r and ε′.

Remark 1 Suppose X is a sparse covariate matrix with α ×
100% non-zero elements (0 < α ≤ 1), and each column has
the same number of non-zero elements. Further, suppose the

non-zero elements of X are i.i.d. from a continuous cumula-
tive distribution function F . We consider two specific cases
of the distribution F as follows.

• Case 1 uniform distribution over (−1, 1).
If the subsample parameter r in Algorithm 1 satisfies
r < αn and

r

n
≥ α − (αε′‖X‖2)2/3

(2np)1/3
,

then the subdata matrix X∗ achieves the condition ‖X −
X∗‖2 ≤ ε′‖X‖2 in Theorem 1 with high probabil-
ity for a relatively large n. Under a general condition
‖X‖2 = O((np)1/2), which can be satisfied as long as
all the elements in X are bounded, such a result indicates
that Algorithm 1 needs to select around {α−(cαε′)2/3}×
100% elements to achieve the (1+ ε)-relative error for a
constant c > 0.

• Case 2 standard normal distribution on R.
If r < αn satisfies

r

n
≥ α − min

{

αφ,
(ε′‖X‖2)2
2G−1(φ)np

}

, (8)

where 0 < φ < 1 and G is the cumulative distribution
function of the chi-squared distribution with 1 degree
of freedom, then the condition ‖X − X∗‖2 ≤ ε′‖X‖2
holds with high probability when n is sufficiently large.
To achieve the (1 + ε)-relative error, (8) indicates us to
select [α −min{αφ, (cε′)2/G−1(φ)}] × 100% elements
under the condition ‖X‖2 = O((np)1/2), where c > 0 is
a constant.

4 MOM core-elements

To guarantee the robustness of the core-elements approach,
we modify Algorithm 1 by combining it with the popular
median-of-means (MOM) procedure (Hsu and Sabato 2014;
Lugosi andMendelson 2019; Lecué and Lerasle 2019, 2020;
Mathieu 2021; Huang and Lederer 2023) to provide a robust
version of core-elements, called “MOM core-elements”. We
first propose an algorithm in the divide-and-conquer frame-
work to obtain the MOM core-elements estimator, and then
we establish consistency of the proposed estimator under
regularity conditions.

4.1 Proposed algorithm

Due to the existence of outliers, we relax the standard i.i.d.
setup to the I ∪ O framework following the work of Lecué
and Lerasle (2020). Specifically, we assume that data are
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partitioned into two (unknown) sets, I and O, such that I ∪
O = {1, . . . , n} and I ∩O = ∅. Data {(xi , yi )}i∈I are i.i.d.
informative data, and data {(xi , yi )}i∈O are outliers on which
no assumption is granted.

Given a random partition of the full data (X , y) =
{(xi , yi )}ni=1 into blocks of equal sizes, the principle of
MOM estimator is that we first obtain an estimation on
each block independently, and then we aggregate the results
from these blocks by taking the median. Let k be the num-
ber of blocks and nl (l = 1, . . . , k) be the size of each
block. Without loss of generality, we assume that both n
and r are divisible by k. Then nl ≡ n/k for l = 1, . . . , k.
Denote (X (l), y(l)) ∈ R

nl×p × R
nl be the data partitioned

into the lth block. For the lth block, we construct the core-
elements matrix X (l)∗ containing rl p non-zero elements,
where rl ≡ r/k for l = 1, . . . , k. Next, we obtain the corre-
sponding estimator ˜β(l) = (X (l)∗�X (l))−1X (l)∗�y(l). Then,
the MOM core-elements estimator is defined as

˜βMOM = med(˜β(1), . . . , ˜β(k)), (9)

where med(·) denotes the coordinate-wise median. Algo-
rithm 2 details the MOM core-elements procedure.

Algorithm 2 MOM Core- elements(X , y, r , k)
1: Input: X = (xi j ) ∈ R

n×p , y ∈ R
n , r , k ∈ Z+

2: Partition (X , y) into k blocks {(X (l), y(l))}kl=1 randomly and evenly
3: for l = 1, . . . , k do
4: Compute ˜β(l) = Core- elements(X (l), y(l), r/k)

5: Return ˜βMOM = med(˜β(1), . . . , ˜β(k))

In Algorithm 2, the number of blocks k indicates the
robustness of our proposed estimator. A popular measure to
quantify robustness is the breakdown point (Hampel 1968;
Donoho and Huber 1983; Donoho and Gasko 1992; Lecué
and Lerasle 2020), defined as the smallest proportion of cor-
rupted observations needed to push an estimator to infinity.
The breakdown point of Algorithm 2 is �k/2�/n, because
less than �k/2� outliers may corrupt at most �k/2� blocks,
leaving the median in (9) equal to the estimation on a single
block with uncorrupted data. Remark that Algorithm 1 is a
special case of Algorithm 2 when k = 1, which is applicable
to datasets without extreme outliers.

Consider the computation time ofAlgorithm 2. Construct-
ing the core-elements estimator on the lth block requires
O(nnz(X (l)) + rp2/k + p3) time, and the aggregation step
needs O(kp) time. Thus, the total computational cost of
Algorithm 2 is at the order of O(nnz(X)+rp2+kp3+kp) =
O(nnz(X) + rp2), where the equation holds because r/k
should be at least of the same order as p for ensuring the
well-definedness of ˜β(1), . . . , ˜β(k). Such cost is the same as
that of Algorithm 1.

4.2 Theoretical properties

Nowwe provide the convergence of theMOMcore-elements
estimator. To begin with, we introduce the following regu-
larity conditions.

(H1) Denote the Fisher informationmatrix I (l) = n−1
l X (l)�

X (l) on the lth block for l = 1, . . . , k. Assume that
c < inf l λmin(I (l)) ≤ supl λmax(I (l)) < ∞ for some
constant c > 0, where λmax(·) and λmin(·) respectively
stand for the maximum and minimum eigenvalues.

(H2) Let L(l) = X (l) − X (l)∗ for l = 1, . . . , k. Assume that
supl ‖L(l)‖2F/n2l → 0 as nl → ∞.

(H3) Assume that the spectral radius λ
(l)
0 = ‖(X (l)�X (l))−1

L(l)�X (l)‖2 < 1 for l = 1, . . . , k.
(H4) Suppose that k > 2|BO| + 1, where BO is the set of

blocks containing at least one outlier and | · | denotes
the cardinal number. Further, assume thatBO contains
finite elements.

Theorem 2 Suppose the conditions (H1)–(H4) hold almost
surely. As k, nl → ∞ (l = 1, . . . , k), ˜βMOM converges to β

in probability, i.e., for any given ε > 0, it holds that

pr(‖˜βMOM − β‖ > ε) → 0.

In Theorem 2, condition (H1) is commonly assumed in
the literature. Conditions (H2) and (H3) bound the error of
the local core-elements estimator on each block by using
Lemma 1. Condition (H4) guarantees the effectiveness of the
MOM procedure according to its breakdown point discussed
above.

5 Simulation studies

In this section, we first evaluate the performance of core-
elements (i.e., Algorithm 1) in estimating β and predicting y
on uncorrupted synthetic datasets. Subsequently, we provide
empirical evidence to support the error bound in Theo-
rem 1. Next, we consider corrupted datasets to show the
effectiveness and robustness of MOM core-elements (i.e.,
Algorithm 2). Finally, we demonstrate the advantage of the
proposed strategy over other subsampling methods w.r.t.
computational efficiency.

5.1 Performance on uncorrupted data

We use CORE to refer to the estimator in Algorithm 1.
For comparison, we consider the full sample OLS esti-
mation (FULL) and several state-of-the-art subsampling
methods mentioned in Table 1, including uniform subsam-
pling (UNIF), doubly sketching (DOUBLY) (Hou-Liu and
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Browne 2023), basic leverage subsampling (BLEV) (Drineas
et al. 2006; Ma et al. 2015), shrinkage leverage subsam-
pling (SLEV) with shrinkage parameter being 0.9 (Ma et al.
2015), information-based optimal subset selection (IBOSS)
(Wang et al. 2019), orthogonal subsampling (OSS) (Wang
et al. 2021), and D-optimal subsampling (DOPT) (Reuter
and Schwabe 2024).

For uncorrupted data, the predictor matrix X is generated
from different kinds of widely-used distributions:

(D1) Multivariate normal distribution, N (0p, �);
(D2) Multivariate log-normal distribution, LN (0p, �);
(D3) Multivariate t-distribution with 3 degrees of freedom,

t3(0p, �),

where � = (σi j ) ∈ R
p×p is a covariance matrix with σi j =

0.6|i− j | for i, j = 1, . . . , p.
To introduce sparsity, after generating the predictormatrix

and centering it, we randomly zero out their elements with a
sparsity ratio α. Specifically, we randomly select α × 100%
of the elements and set these elements to be zero. Con-
sider α = {0, 0.2, 0.4, 0.6, 0.8}, referred to as (R1)–(R5),
respectively. Next, we add a small random perturbation fol-
lowing U (−0.1, 0.1) to each zero element of the predictor
matrix to obtain a numerically sparse matrix. Then, (R1)
corresponds to a completely dense matrix, and (R5) cor-
responds to a highly numerically sparse matrix. We then
generate the response y from the linear model (1). The true
coefficient β is a p-dimensional vector of ones, and the
signal-to-noise ratio, defined as SNR = var(Xβ)/σ 2, is set
to be 4. The simulations in misspecified linear models and
alternative choices of true β are relegated to the supplemen-
tary material. Let the sample size n = 104 and dimension
p = 102. For the row-wise subsampling methods, we select
r ∈ {2p, 4p, 6p, 8p, 10p} rows for each of these methods.
For a fair comparison, we select s = rp elements for the
proposed core-elements method. We calculate the empirical
mean squared error (MSE) for each of the estimators based
on one hundred replications, i.e.,

MSE = 1

100

100
∑

i=1

‖̂β(i) − β‖2
‖β‖2 , (10)

where ̂β(i) represents the estimator in the i th replication. We
also consider the prediction MSE (PMSE). For the i th repli-
cation, we randomly split the observed sample into a training
set (y(i)

train, X
(i)
train) of size �0.7n� and a test set (y(i)

test, X
(i)
test) of

size �0.3n�. For each subsampling method, we select a sub-
set from the training set leading to an estimator ̂β

(i)
train, and

then use it to predict the response ytest in the test set. In this
way, PMSE is calculated as

PMSE = 1

100

100
∑

i=1

‖X (i)
test

̂β
(i)
train − y(i)

test‖2
‖y(i)

test‖2
. (11)

The results of log(MSE) and log(PMSE) versus different
subsample sizes are shown in Figs. 2 and 3, respectively.

In Figs. 2 and 3, we observe that both MSE and PMSE
w.r.t. all estimators decreases as r increases. We also observe
that CORE consistently outperforms other subsampling
approaches under all circumstances. The advantage becomes
more apparent when the level of sparsity increases, i.e., from
(R1) to (R5). Such an observation indicates the proposed
estimator can provide a more effective estimate than the
competitors, especially when the predictor matrix is of high
sparsity. Such success can be attributed to the fact that the
proposed core-elements approach can effectively utilize the
sparsity structure of the predictor matrix, and the proposed
estimator is unbiased and has an approximately minimized
estimation variance.

While other deterministic subsampling methods (i.e.,
IBOSS, OSS, and DOPT) are also competitive, their perfor-
mance varies significantly across different data distributions.
Specifically, the OSS method performs well with normally
distributed data (D1), but it loses efficacy with asymmetric
log-normal (D2) and heavy-tailed t-distributions (D3), per-
forming worse than uniform sampling. This behavior aligns
with the findings presented in Table3 of Yu et al. (2023). In
contrast,while IBOSSandDOPTare comparable toCORE in
handling heavy-tailed distributions, they fall short in normal
distributions. Overall, the proposed core-elements approach
demonstrates both generality and superiority across a variety
of data distributions.

In order to verify the theoretical error bound provided in
Theorem 1, we compare the empirical and theoretical values
of ε under different values of ε′, as shown in Fig. 4. Specifi-
cally, given a small ε′, the empirical value of ε is calculated
as

‖y − X˜β‖2
‖y − X̂βOLS‖2 − 1

according to (7), and the theoretical value of ε is calculated
as

[

ε′κ2(X){κ2(X) + 1}‖y‖
{1 − ε′κ2(X)}‖y − X̂βOLS‖

]2

according to (6). Both ε and ε′ have been made logarith-
mic transformation in Fig. 4. We can observe that although
the empirical and theoretical values of ε differ, their growth
trends have an apparent parallel pattern. This observation
indicates that our proposed error bound and the empirical
value are of the same order. Their difference is up to a con-
stant under the log transformation.
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Fig. 2 Comparison of different estimators w.r.t. MSE. Each row represents a particular data distribution, i.e., (D1)–(D3), and each column represents
a different sparsity ratio, i.e., (R1)–(R5). Vertical bars are the standard errors

Fig. 3 Comparison of different estimators w.r.t. PMSE. Each row represents a particular data distribution, i.e., (D1)–(D3), and each column
represents a different sparsity ratio, i.e., (R1)–(R5). Vertical bars are the standard errors
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Fig. 4 Comparison of the empirical value and the theoretical value of the error term ε. Each row represents a particular data distribution, i.e.,
(D1)–(D3), and each column represents a different sparsity ratio, i.e., (R1)–(R5)

5.2 Performance on corrupted data

We compare the proposed MOM core-elements approach
(i.e., Algorithm 2), referred to as MOM-CORE, with the full
sample OLS estimation and the subsampling methods men-
tioned above in the presence of outliers. To ensure fairness,
all competing methods are equipped with the MOM proce-
dure.

The corrupteddata consist of informativedata {(xi , yi )}i∈I
and various types of outliers {(xi , yi )}i∈O with O = O1 ∪
O2 ∪ O3 ∪ O4, such that |O| = no and |I| = n − no.
{(xi , yi )}i∈I is generated in the same way as in the previous
section, and {(xi , yi )}i∈O is constructed following the setup
in Lecué and Lerasle (2020). More precisely,

• For i ∈ O1 with |O1| = �no/4�, yi = 1000 + 10ζ1 and
xi = −10×1p+ζ2,where ζ1 ∈ R and ζ2 ∈ R

p are noises
following the (multivariate) standard normal distribution;

• For i ∈ O2 with |O2| = �no/4�, yi = −500 + 10ζ1 and
xi = 10 × 1p + ζ2;

• For i ∈ O3 with |O3| = �no/4�, yi is a 0 − 1-Bernoulli
random variable and xi is uniformly distributed over
[0, 1]p;

• For i ∈ O4, (xi , yi ) is generated from the linearmodel (1)
with the same true parameter β = 1p but for a different
choice of design X and noise ε. Here, we take the covari-
ancematrix� as an identitymatrix and ε is a heavy-tailed
noise following t2 distribution.

After generating the corrupted data above, observations in
I and O are merged and shuffled before downstream oper-
ations. Let the sample size n = 5 × 104, the dimension
p = 20, and the number of outliers no = 19. We subsam-
ple r ∈ {40p, 50p, 60p, 70p, 80p} rows for row-sampling
methods or s = rp elements for MOM-CORE. The number
of blocks is set to be k = 40 for the MOM procedure. Other
settings are the same as those in the above section.

To evaluate the performance of different methods on cor-
rupted data, we calculate MSE according to (10) and PMSE
according to (11) for each method, and their results ver-
sus increasing subsample sizes are shown in Figs. 5 and 6,
respectively. Remark that when predicting the responses, we
first split the training set and test set on informative data
{(xi , yi )}i∈I , and then add outliers {(xi , yi )}i∈O to the train-
ing set; that is, the test set is not corrupted by outliers.
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Fig. 5 Comparison of different estimators w.r.t. MSE on corrupted data. Each row represents a particular data distribution, i.e., (D1)–(D3), and
each column represents a different sparsity ratio, i.e., (R1)–(R5). Vertical bars are the standard errors

Fig. 6 Comparison of different estimators w.r.t. PMSE on corrupted data. Each row represents a particular data distribution, i.e., (D1)–(D3), and
each column represents a different sparsity ratio, i.e., (R1)–(R5). Vertical bars are the standard errors
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Table 2 CPU time (in seconds)
of estimating β, for different
combinations of n and p under
(D1), (R1)

Method FULL UNIF DOUBLY BLEV SLEV IBOSS OSS DOPT CORE

(a) CPU time for different p, with fixedn = 105

p = 50 0.82 0.00 0.02 0.51 0.51 0.15 0.40 0.43 0.08

p = 100 3.19 0.01 0.08 2.02 2.03 0.43 2.26 1.89 0.35

p = 500 76.31 0.39 1.61 46.37 46.39 6.53 58.77 45.54 5.29

(b) CPU time for differentn, with fixed p = 100

n = 5 × 104 1.72 0.00 0.06 1.01 1.01 0.12 1.87 0.89 0.13

n = 5 × 105 16.95 0.02 0.10 10.86 10.85 1.36 6.41 9.92 0.87

n = 5 × 106 189.65 0.11 0.21 119.83 119.84 12.94 43.28 91.52 7.54

As shown in Figs. 5 and 6, MOM-CORE consistently
achieves the smallest estimation and prediction errors among
all these subsampling methods, and its advantage becomes
more prominent with the increase of sparsity. Such an obser-
vation indicates that by integratingwith theMOMprocedure,
our proposed MOM core-elements algorithm leads to an
effective and robust estimator. Additionally, it is notewor-
thy that in both Figs. 3 and 6, the (MOM-)CORE prediction
not only outperforms other subsampling approaches but also
often delivers results that are nearly indistinguishable from
full data.

5.3 Computing time

To compare the computational efficiency of these subsam-
pling approaches, we present the CPU time (in seconds) for
different combinations of the sample sizen and thedimension
p under the case of (D1), (R1) in Table 2. Here, data corrup-
tion and the MOM procedure are omitted to save space, as
they hardly affect the computation time.We take the subsam-
ple parameter r = 10p. All computations are implemented
using the R programming language on a desktop running
Windows 10 with an Intel i5-10210U CPU and 16GB mem-
ory. The CPU time for using the full sample is also presented
for comparison.

As can be observed from Table 2, all of these estimates
are more efficient than the full sample OLS estimate. It is
unsurprising that the randomsampling-basedmethods,UNIF
andDOUBLY, require the least computing time, as they avoid
the additional step of calculating subsampling probabilities.
Among these methods, BLEV, SLEV, and DOPT necessitate
the calculation of singular value decomposition of the full
predictor matrix, leading to relatively longer CPU times. As
expected, OSS also requires considerable computing time
due to its complexity of O(np log r + rp2).

Notably, the proposed core-elements approach only
requires a longer time than UNIF and DOUBLY, while being
faster than other competitors in almost all circumstances. In
addition, its superiority in computation becomesmore promi-

nent when n is much larger than p, which is exactly the most
suitable situation for taking advantage of subsampling.

6 Real data example

The rapid development of the single-cell RNA sequencing
(scRNA-seq) technique enables the gene expression profil-
ing of single cells. ScRNA-seq data are often organized into
a read count matrix, where rows are cells, columns rep-
resent genes, and the (i, j)th component is the observed
expression level of the gene j in cell i . We consider a
scRNA-seq dataset collected by Azizi et al. (2018), which
includes CD45+ immune cells from eight breast carcino-
mas, as well as matched normal breast tissue, blood, and
lymph node. The dataset is publicly available with the acces-
sion code GSE114725 in Gene Expression Omnibus (Edgar
et al. 2002). Our goal is to find the relationship between
the expression of the gene MT-RNR2 and other genes.
As a critical neuroprotective factor, the MT-RNR2 gene
encodes the Humanin polypeptide and protects against death
in Alzheimer’s disease.

To achieve the goal, we take the reads of this gene as the
response and the reads for other genes as predictors. Fol-
lowing the data pre-processing steps in Huang et al. (2008),
we first screen the genes as follows: (1) select the top 3000
genes with the highest expression levels; and (2) select the
top 500 genes with the largest variances.We then standardize
the predictors so that they have unit variance. The distribu-
tion of pre-processed data points is shown in Fig. 7a. The
final sample contains n ≈ 105 cells and p = 500 genes
with over 75% zero elements, as illustrated through the his-
togram in Fig. 7b. Figure7c presents the relationship between
the response against ten randomly selected predictors of the
scRNA-seq dataset, from which we can observe linear pat-
terns. Therefore, it is reasonable to assume the data follow
the linear model (1).

As the true coefficient vector β is unknown in real-world
data analysis,we focus on comparing prediction performance
by calculating the PMSE as defined in (11). This evalua-
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Fig. 7 Visualization of the
scRNA-seq dataset’s
distribution. For visual clarity,
the leverage and response values
are (shifted to the positive range
and) log-transformed in the
subfigure (a), and the predictor
values are truncated at the 99.9%
quantile in the subfigure (b)

tion is based on one hundred bootstrap samples. The training
and test sets are randomly partitioned according to the ratio
of 7:3. The subsampling methods considered here are the
same as those in Sect. 5, and the subsample size is set to
be r ∈ {2p, 22 p, 23 p, 24 p, 25 p} rows or s = rp elements
equivalently. We set the number of blocks for MOM to be
k = 5.

As shown in Fig. 7, the data exhibits linear patterns
between the response and predictors, with no apparent out-
liers. Consequently, the MOM variant performs similarly to
its original estimator. For clarity, we present only the MOM-
FULL and MOM-CORE, omitting the MOM variants of
other competing subsampling methods.

Figure 8 displays the performance of different approaches
for predicting y on the test set.We observe the baselinemeth-
ods, FULL and MOM-FULL, achieve almost the same pre-
diction accuracy, suggesting the absence of extreme outliers
in the dataset. Similarly, the proposed CORE and MOM-
CORE methods have nearly identical prediction accuracy,
both of which consistently outperform other subsampling
approaches. In addition, the proposed estimators perform

Fig. 8 Comparison of different methods w.r.t. PMSE for the scRNA-
seq dataset

almost the same as ̂βOLS w.r.t. the PMSE, even when the
selected number of elements is just s = 2p2.

Table 3 shows the CPU time for these subsampling meth-
ods. Compared to the full sample estimate, all the subsample
estimates require a shorter computational time, except for the
OSS method as r increases. This exception can be attributed
to themultiplicative order O(log r) in its computational cost.
Similar to the results in Table 2, we observe that the core-
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Table 3 CPU time (in seconds)
of estimating β for the
scRNA-seq dataset

Method FULL UNIF DOUBLY BLEV SLEV IBOSS OSS DOPT CORE

r = 2p – 0.19 0.23 46.98 46.96 8.27 12.13 43.29 3.24

r = 23 p – 0.81 1.16 47.44 47.43 9.81 85.32 44.84 6.05

r = 25 p – 3.39 6.43 50.06 50.08 15.33 438.91 47.50 8.53

n 80.24 – – – – – – – –

elements approach has great advantages in computing. It
is only slower than the random sampling-based UNIF and
DOUBLYmethods, while requiring nearly half theCPU time
of the IBOSS method. The results in Fig. 8 and Table 3 indi-
cate that the proposed strategy can provide a more effective
estimate than the competitors, requiring a relatively short
computational time.

7 Discussion

Realizing the gaps of element-wise subset selection methods
in large-scale data analysis, we developed the core-elements
method for least squares estimation in linear models. Theo-
retically, we showed that the proposed core-elements esti-
mator approximately minimizes an upper bound of the
estimation variance. We also provided a coresets-like finite-
sample bound for the proposed estimator, which is supported
by empirical results. To deal with data corruption, we intro-
duced the median-of-means estimation to provide a robust
version of core-elements and established consistency of the
resultant estimator. Empirical studies suggest that the pro-
posed method is not only suitable for (numerically) sparse
matrices but also has a superior performance formore general
dense cases in terms of both accuracy and time.

Considering that the predictor matrix defined by basis
function evaluations usually enjoys the (numerically) sparse
property, we plan to extend core-elements to nonparametric
additive models for efficiently approximating the penalized
least squares estimation in the future. More importantly, the
core-elements approach not only facilitates computation, but
also has excellent applications in preserving data privacy and
improving communication efficiency in federated learning,
which are also left to our future work.
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Dereziński,M.,Warmuth,M.K.,Hsu,D.J.: Leveraged volume sampling
for linear regression. Adv. Neural. Inf. Process. Syst. 31, 2510–
2519 (2018)

Drineas, P., Zouzias, A.: A note on element-wise matrix sparsification
via amatrix-valuedBernstein inequality. Inf. Process. Lett. 111(8),
385–389 (2011)

d’Aspremont, A.: Subsampling algorithms for semidefinite program-
ming. Stoch. Syst. 1(2), 274–305 (2011)

Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 30(1), 207–210 (2002)

El Karoui, N., d’Aspremont, A.: Second order accurate distributed
eigenvector computation for extremely large matrices. Electron.
J. Stat. 4, 1345–1385 (2010)

Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data:
Constant-size coresets for k-means, PCA, and projective cluster-
ing. SIAM J. Comput. 49(3), 601–657 (2020)

Garber, D., Hazan, E.: Sublinear time algorithms for approximate
semidefinite programming. Math. Program. 158(1), 329–361
(2016)

Gupta, N., Sidford, A.: Exploiting numerical sparsity for efficient learn-
ing: faster eigenvector computation and regression. Adv. Neural.
Inf. Process. Syst. 31, 5274–5283 (2018)

Hampel, F.R.: Contribut. Theory Robust Estimat. University of Califor-
nia, Berkeley (1968)

Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM,
Philadelphia (2008)

Huang, S.-T., Lederer, J.:Deepmom:Robust deep learningwithmedian-
of-means. J. Comput. Graph. Stat. 32(1), 181–195 (2023)

Hou-Liu, J., Browne, R.P.: Generalized linear models for massive data
via doubly-sketching. Stat. Comput. 33(5), 105 (2023)

Hastie, T., Mazumder, R., Lee, J.D., Zadeh, R.: Matrix completion and
low-rank SVD via fast alternating least squares. J. Mach. Learn.
Res. 16(1), 3367–3402 (2015)

Huang, J., Ma, S., Zhang, C.H.: Adaptive Lasso for sparse high-
dimensional regressionmodels. Stat. Sin.18(4), 1603–1618 (2008)

Hsu, D., Sabato, S.: Heavy-tailed regression with a generalizedmedian-
of-means. In: International Conference on Machine Learning, pp.
37–45. PMLR (2014)

Joseph, V.R., Mak, S.: Supervised compression of big data. Stat. Anal.
Data Min.: ASA Data Sci. J. 14(3), 217–229 (2021)

Joseph, V.R., Vakayil, A.: SPlit: an optimal method for data splitting.
Technometrics 64(2), 166–176 (2022)

Kundu,A.,Drineas, P.,Magdon-Ismail,M.:RecoveringPCAand sparse
PCAvia hybrid-(�1, �2) sparse samplingof data elements. J.Mach.
Learn. Res. 18(1), 2558–2591 (2017)

Kairouz, P.,McMahan, H.B., Avent, B., Bellet, A., Bennis,M., Bhagoji,
A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R.,
et al.: Advances and open problems in federated learning. Found.
Trends Mach. Learn. 14(1–2), 1–210 (2021)
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